Enhancing sensitivity and specificity in rare cell capture microdevices with dielectrophoresis.

نویسندگان

  • James P Smith
  • Chao Huang
  • Brian J Kirby
چکیده

The capture and subsequent analysis of rare cells, such as circulating tumor cells from a peripheral blood sample, has the potential to advance our understanding and treatment of a wide range of diseases. There is a particular need for high purity (i.e., high specificity) techniques to isolate these cells, reducing the time and cost required for single-cell genetic analyses by decreasing the number of contaminating cells analyzed. Previous work has shown that antibody-based immunocapture can be combined with dielectrophoresis (DEP) to differentially isolate cancer cells from leukocytes in a characterization device. Here, we build on that work by developing numerical simulations that identify microfluidic obstacle array geometries where DEP-immunocapture can be used to maximize the capture of target rare cells, while minimizing the capture of contaminating cells. We consider geometries with electrodes offset from the array and parallel to the fluid flow, maximizing the magnitude of the resulting electric field at the obstacles' leading and trailing edges, and minimizing it at the obstacles' shoulders. This configuration attracts cells with a positive DEP (pDEP) response to the leading edge, where the shear stress is low and residence time is long, resulting in a high capture probability; although these cells are also repelled from the shoulder region, the high local fluid velocity at the shoulder minimizes the impact on the overall transport and capture. Likewise, cells undergoing negative DEP (nDEP) are repelled from regions of high capture probability and attracted to regions where capture is unlikely. These simulations predict that DEP can be used to reduce the probability of capturing contaminating peripheral blood mononuclear cells (using nDEP) from 0.16 to 0.01 while simultaneously increasing the capture of several pancreatic cancer cell lines from 0.03-0.10 to 0.14-0.55, laying the groundwork for the experimental study of hybrid DEP-immunocapture obstacle array microdevices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system.

The isolation of circulating tumor cells (CTCs) from cancer patient blood is a technical challenge that is often addressed by microfluidic approaches. Two of the most prominent techniques for rare cancer cell separation, immunocapture and dielectrophoresis (DEP), are currently limited by a performance tradeoff between high efficiency and high purity. The development of a platform capable of the...

متن کامل

2-Dimensional MEMS dielectrophoresis device for osteoblast cell stimulation.

A fixed microelectrode device for cell stimulation has been designed and fabricated using micro-electro-mechanical systems (MEMS) technology. Dielectrophoretic forces obtained from non-uniform electric fields were used for manipulating and positioning osteoblasts. The experiments show that the osteoblasts experience positive dielectrophoresis (p-DEP) when suspended in iso-osmotic culture medium...

متن کامل

Electrical capture and lysis of vaccinia virus particles using silicon nano-scale probe array.

A probe array with nano-scale tips, integrated into a micro-fluidic channel was developed for the capture and lysing of small number of vaccinia virus particles using dielectrophoresis. The nano-scale probe array was fabricated in Silicon on Insulator (SOI) wafers, and sharpened with repeated oxidation steps. The gap between each probe ranged from 100 nm to 1.5 microm depending on fabrication p...

متن کامل

Enhancing dielectrophoresis effect through novel electrode geometry.

This paper presents an original device to enhance dielectrophoresis (DEP) effects through novel geometry of the electrodes. Implemented with a simple single-layer metal process, our microchip device consists of individually triangular-shaped electrodes in a parallel array. When activated with DEP waveforms, the novel-shaped electrodes generate horizontal bands of increasing electric fields. Wit...

متن کامل

بررسی مقایسه‌ای نتایج سل بلاک و سیتولوژی در مایعات ارسالی به بیمارستان حضرت رسول اکرم(ص) در سال 1382

    Background & Aim: The importance of exact diagnosis of diseases and prevention of complications caused by them is evident to everyone. One of the preventive methods is early detection of diseases. Cytologic examination is a useful and effective method among all. Recognition of early changes of cell morphology could perhaps help us diagnose diseases and manage them before clinical manifestat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomicrofluidics

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2015